
The Patterns of Interaction Design and

The Design of Interaction Patterns

Ahmed Seffah

Ecole Hôteliere de Lausanne
University of Applied Sciences of Western Switzerland 75022, Paris, France

alain.therieur@inihm.fr

ABSTRACT

User interface design patterns also called HCI or interac-

tion or usability patterns have been introduced first as a

medium to capture and represent solutions to users’

problems. Patterns have been used also as a medium for

transferring the expertise of HCI designers and usability

professionals to software engineers, who are usually un-

familiar with UI design and usability principles. Design

patterns have been considered also as a lingua franca for

crossing cultural and professional barriers between dif-

ferent stakeholders. Several HCI professionals have in-

troduced their own pattern languages with specific termi-

nology, classification and meanings. Patterns have also

been presented as building reusable blocks at different

levels of granularity, which can be combined to compose

new interactive systems. Despite the obvious and ac-

claimed potential of these pattern-driven design ap-

proaches, patterns usage has not achieved the acceptance

and widespread applicability envisaged by pattern pio-

neers such as Christopher Alexander. This paper pro-

vides an analysis of the facts about patterns usages, pat-

tern languages and pattern-based design approaches.

Some shortcomings in the presentation and application of

HCI patterns are identified and discussed under the pre-

vailing fallacies. Based on the analysis of how patterns

have used so far, we draw some recommendations and

future perspectives on what can be done to address the

existing shortcomings. Making patterns more accessible,

easily understandable, comparable and integratable in

software and HCI design tools can promote HCI patterns

to claim the usability, usefulness and importance origi-

nally envisaged for the pattern-oriented design approach.

CATEGORIES AND SUBJECT DESCRIPTORS: D.2.2

Design Tools and Techniques: User interfaces, D.2.11

Software Architectures: Patterns (e.g., client/server, pipe-

line, blackboard).

GENERAL TERMS: Design.

KEYWORDS: Design patterns, pattern-oriented design,

human-computer interaction, design methods.

FROM BUILDING TO SOFTWARE DESIGN PATTERNS

Among the early attempts to capture and use design

knowledge in the format of patterns, the first major mi-

lestone is often attributed to the architect Christopher Al-

exander, in the late 1970s. In his two books, A Pattern

Language (Alexander, 1977) and A Timeless Way of

Building, he discusses the capture and use of design

knowledge in the format of patterns, and presents a large

collections of pattern examples to help architects and en-

gineers with the design of buildings, towns, and other ur-

ban entities. To illustrate, Alexander proposes an archi-

tectural pattern called Wings of Light (Alexander, 1977),

where the problem is: “Modern buildings are often

shaped with no concern for natural light - they depend

almost entirely on artificial light. But, buildings which

displace natural light as the major source of illumination

are not fit places to spend the day.”

According to Alexander, every pattern has three essential

elements, which are: a context, a problem, and a solution.

The context describes a recurring set of situations in

which the pattern can be applied. The problem refers to a

set of forces, i.e., goals and constraints, which occur in

the context. Generally, the problem describes when to

apply the pattern. The solution refers to a design form or

a design rule that can be applied to resolve the forces.

Solution describes the elements that constitute a pattern,

relationships among these elements, as well as responsi-

bilities and collaboration.

All of Alexander’s patterns address recurrent problems

that designers face by providing a possible solution with-

in a specific context. They follow a similar structure, and

the presented information is organized into pattern

attributes, such as Problem and Design Rationale. Most

noteworthy, the presented solution statement is abstract

enough to capture only invariant properties of good de-

sign. In addition, (Alexander, 1977) recognized that the

design and construction of buildings required all stake-

holders to make use of a common language for facilitat-

ing the implementation of the project from its very be-

ginnings to completion. If organized properly, patterns

could achieve this for all the participants of a design

project, acting as a communication tool for design.

In Notes (Alexander, 1964), Alexander argues that tradi-

tional architectural design practices fail to create prod-

ucts that meet the real needs of the user, and are ultimate-

ly inadequate in improving the human condition. His pat-

terns were introduced in a hierarchical collection with the

purpose of making buildings and urban entities more us-

able and pleasing for their inhabitants. Interestingly

enough, this very same idea can be extrapolated to HCI

design, where the primary goal is to make interactive sys-

tems that are usable and pleasing to users.

The pattern concept was not well known until 1987 when

patterns appeared again at OOPSLA, the object orienta-

tion conference in Orlando. There Kent Beck and Ward

Cunningham (Beck and Cunningham, 1987) introduced

pattern languages for object-oriented software construc-

tion in a seminal paper. Since then many papers and

presentations have appeared, authored by renowned

software design practitioners such as Grady Booch, Ri-

chard Helm, Erich Gamma, and Kent Beck. In 1993, the

formation of (Hildside Group, 1993) by Beck, Cunning-

ham, Coplien, Booch, Johnson and others was the first

step forward to forming a design patterns community in

the field of software engineering. In 1995, Erich Gamma,

Richard Helm, Ralph Johnson, and John Vlissides (the

Gang-of-Four, GoF) published “Design Patterns: Ele-

ments of Reusable Object-Oriented Software (Gamma et

al., 1995). (Gamma et al., 1995) documented 23 design

patterns in their book; one largely used pattern is the Ob-

server.

PATTERNS OF HCI: A DEFINITION

The first milestone about patterns in HCI is the workshop

organized at CHI conference in 1997. Until 2001, the

discussion about patterns in the HCI community where

more focused on defining the concept of interaction pat-

tern and its roles. From the most generic to more HCI

domain dependant, a HCI pattern is:

1. Form, template, or model or, more abstractly, a set

of rules which can be used to make or to generate

things or parts of a thing;

2. A general repeatable interaction technique to a

commonly occurring user problem;

3. “An invariant solution to address a recurrent design

problem within a specific context” (Dix, 1998);

4. A general repeatable solution to a commonly-

occurring usability problem in interface design or in-

teraction design;

5. A solution to a usability problem that occurs in dif-

ferent contexts of use;

6. “A successful HCI design solution among HCI pro-

fessionals that provides best practices for HCI de-

sign to anyone involved in the design, development,

evaluation, or use of interactive systems” (Borchers,

2001).

In essence, patterns of HCI give an invariant solution to a

problem and are abstract enough to draw on the common

elements that hold between all instances of the resulting

solution. What is notable about design patterns is that

they are both concrete and abstract at the same time.

They are concrete enough to provide sound solutions to

design problems, which can be put immediately into

practice. On the other hand, they are abstract enough to

be applied to different situations. HCI focuses on the de-

sign of usable systems, and HCI patterns are but one of a

handful of design tools that provide a means to abstract

and reuse the essential details of successful and usable

design solutions. Prior to discussing patterns in detail, it

is important to review guidelines and claims, two other

tools that have influenced and promoted the reuse of de-

sign knowledge in HCI.

Above all, patterns are problem-oriented, yet not toolkit-

specific. In addition, they are more concrete and easier to

use for novice designers, context-oriented, and promote

reusability. Overall, patterns have a number of benefits,

including:

1. They are a relatively intuitive means to document

design knowledge and best practices;

2. They are straightforward and readable for designers,

developers and other stakeholders, and can therefore

be used for communication purposes;

3. They come from experiments on good know-how

and were not created artificially;

4. They represent design knowledge from different

views, including social and organizational aspects,

conceptual and detailed design;

5. They capture essential principles of good design by

telling the designer what to do and why, but are ge-

neric enough to allow for different implementations.

This last property is an especially discriminating charac-

teristic of patterns, allowing them to give rise to different

implementations of the same design solution. In other

words, patterns are an opportunity to bring together a UI

design solution and a software implementation solution

in the same place.

For example, different implementations are necessary to

support variations in design look and feel, platform pre-

ference and usage context. For example, the Quick

Access pattern, used to logically group the most fre-

quently used pages on a website, can be implemented on

three different platforms. For a web browser on a desk-

top, the Quick Access pattern is implemented as an index

browsing toolbar; for a PDA, as a combo box; and for a

mobile phone, as a selection (Javahery and Seffah,

2002).

As a conclusion, some important defining characteristics

and basic terminologies that are relevant to patterns in-

clude: identification of the problem in context and with

imposed constraints, existence of the solution, recur-

rence of the problem, invariance abstraction of aspects

of the solution, practicality of the solution, which needs

to strike a balance between optimality and objectivity,

and communicability of the problem and the process of

arriving at the solution to the user. The relationship be-

tween some of these characteristics is illustrated in Fig-

ure 1.

Figure 1 : Pattern’s Anatomy and Components.

MISCONCEPTIONS ABOUT PATTERNS

Common misconceptions about patterns (Beck et al.,

1996) can be summarized as follows:

1. Patterns are only object-oriented;

2. Patterns provide only one solution;

3. Patterns are implementations;

4. Every solution is a pattern.

Although most of the patterns are object-oriented, pat-

terns can also be found in variety of software systems,

independently of the methods used in developing those

systems (Beck et al., 1996). Patterns are widely applica-

ble to every software system, since they describe soft-

ware abstractions (Beck et al., 1996).

Patterns provide more than one solution

Patterns describe solutions to the recurring problems, but

do not provide an exact solution, rather capture more

than one solution. This implies that a pattern is not an

implementation, although it may provide hints about po-

tential implementation issues. The pattern only describes

when, why, and how one could create an implementation.

Every solution is not necessary a pattern

Not every solution, algorithm, or heuristic can be viewed

as a pattern. In order to be considered as a pattern, the

solution must be verified as recurring solution to a recur-

ring problem. The verification of the recurring phenome-

non is usually done by identifying the solution and the

problem (the solution solves) in at least three different

existing systems. This method of verification is often re-

ferred to as the rule of three. The following example of

(Alexander, 1979) illustrates this misconception:

Window place

Consider one simple problem that can appear in the ar-

chitecture. Let us assume that a person wants be com-

fortable in a room, implying that the person needs to sit

down to really feel comfortable. Additionally, the sun-

light is an issue, since the person is most likely to prefer

to sit near the light. Thus, the forces of pattern in this ex-

ample are:

1. The desire to sit down, and

2. The desire to be near light. The solution to this prob-

lem could be that in every room the architect should

make one window into a window place.

Not every pattern can be considered to be a good pattern.

There is a set of criteria that a pattern must fulfill in or-

der to be a good one. A pattern encapsulating these crite-

ria is considered to be a good pattern (Gamma et al.,

1995; Alexander, 1977; Coplien, 2001):

1. A solution (but not obvious);

1. A proven concept ;

2. Relationships;

3. Human component.

Thus, (Gamma et al., 1995; Alexander, 1977; Coplien,

2001) claim, according to the criteria quoted above, that

a good pattern should solve a problem, i.e., patterns

should capture solutions, not just abstract principles or

strategies. A good pattern should be a proven concept,

i.e., patterns should capture solutions with a track record,

not theories or speculation. A good pattern should not

provide an obvious solution, i.e., many problem-solving

techniques (such as software design paradigms or me-

thods) try to derive solutions from first principles. The

best patterns generate a solution to a problem indirectly,

which is a necessary approach for the most difficult prob-

lems of design. A good pattern also describes a relation-

ship, i.e., it does not just describe modules, but describes

deeper system structures and mechanisms. Additionally,

a good pattern should contain a significant human com-

ponent (minimize human intervention). All software

serves human comfort or quality of life; the best patterns

explicitly appeal to aesthetic and utility.

PATTERNS AS A TOOL TO CAPTURE BEST DESIGN

PRACTICES

Historically, best practices reusability in HCI has at-

tracted far less attention in comparison with other discip-

lines like software engineering, but this trend has been

changing. There have been many partially successful ap-

proaches to collect, represent and deliver best design

practices. The most popular ones are:

1. Study of exemplars;

2. Practice under the instruction of a mentor;

Pattern

Identity

Environment

Constraints Apply

Consequence

Practical

Communicable
Problem Solution

Recurrence

Context

3. Design principles to capture the mentor's implicit

knowledge;

4. Design rationale for organizing application of prin-

ciples to cases;

5. Design guidelines and style guides making prin-

ciples specific;

6. UI toolkits embodying some guidelines.

In the nineties, design guidelines became an increasingly

popular way to disseminate usability knowledge and en-

sure a degree of consistency across applications (Macin-

tosh, 1992; Microsoft, 1995) and within organizations

(Billingsley, 1995; Rosenzweig, 1996; Weinschenk and

Yeo, 1995). These guidelines often took the form of style

guides and were usually platform-specific, prescribing

how different kinds of windows should look and interact

with the user for tasks such as choosing from lists or

menu controls.

Introduced in the last decade, Claims (Sutcliffe, 2000)

are another means to capture and disseminate HCI design

knowledge. They are associated with a specific artefact

and usage context, providing design advice and possible

trade-offs. Claims are powerful tools because, in addition

to providing negative and positive design implications,

they contain both theoretical and cognitive rationale.

They also contain associated scenarios which provide de-

signers with a concrete idea of the context of use. When

first introduced, claims were limited in their generality

because they were too narrowly defined with specific

scenarios and examples. Subsequently, the paradigm of

reuse was applied to claims in order to make them more

generic and applicable to a wider range of application

contexts

HCI DESIGN PATTERN LANGUAGES

A number of pattern languages have been suggested in

HCI. For example, (Duyne, 2003) “The Design of Sites”,

(Welie, 1999) Interaction Design Patterns, and (Tidwell,

1997) UI Patterns and Techniques play an important

role. In addition, specific languages such as (Laakso,

2003) User Interface Design Patterns and the UPADE

Language (Engelberg and Seffah, 2002) have been pro-

posed as well. Different pattern collections have been

published including patterns for Web page layout design

(Tidwell, 1997) and (Coram and Lee, 1998) for naviga-

tion in large information architectures, as well as for vi-

sualizing and presenting information.

Pattern languages have three essential elements. First, the

language has to contain a standard pattern definition.

One format for defining patterns was presented in the

previous section – with the common attributes Context,

Problem, Solution, Forces, Related Patterns, and Exam-

ples. Secondly, the language must logically group pat-

terns. (Tidwell, 1997) organizes her patterns according to

different facets of UI design; categories include Content

Organization, Navigation, Page Layout, and Ac-

tions/Commands. Another example is the Experiences

pattern language, developed by (Coram and Lee, 1998),

which concentrates on the user’s experience within soft-

ware systems. The main focus is on the interactions be-

tween the user and the interfaces of software applica-

tions. Patterns are grouped according to different focus

areas and user interface paths such as interaction style,

Explorable interface, and symbols. Thirdly, pattern inter-

relationships should be described. In Experiences lan-

guage, the relationships between the patterns are mapped

and indicated by arrows, creating a sort of “flow” within

the language.

Distinguishing between different types of relationships

reinforces the generative nature of pattern languages, and

supports the idea of using patterns to develop complete

designs. However, for designers to be able to use patterns

effectively and with efficacy to solve problems in HCI

and interactive system design, patterns need to be inti-

mately related to a design process. Based on the design

problem, pattern languages should provide starting points

for the designer, and a means to systematically walk the

designer from pattern to pattern.

PATTERN LANGUAGES AND THE USER-CENTRIC

DESIGN PROCESS

Pattern languages are interesting tools which can guide

software designers through the design process. However,

there exists no commonly agreed upon UI design process

that employs pattern languages as first class tools. Sever-

al people have tried to link patterns to a process or

framework, bringing some order to pattern languages,

and suggesting that potentially applicable patterns be

identified early on based on user, task and context re-

quirements. A pattern-driven design process should lead

designers to relevant patterns based on the problem at

hand, demonstrate how they can be used, as well as illu-

strate combinations with related patterns.

In the Pattern-Supported Approach (PSA) Framework,

HCI patterns are used at various levels to solve problems

relating to business domains and processes, tasks, struc-

ture and navigation, and GUI design (Granlund and La-

frenière, 1999). The main idea that can be drawn from

PSA is that HCI patterns can be documented identified

and instantiated according to different parts the design

process – giving us knowledge as early on as during sys-

tem definition. For example, during system definition or

task and user analysis, depending on the context of use,

we can decide which HCI patterns are appropriate for the

design phase. Although PSA shows the beginnings of as-

sociating patterns to the design process, pattern interrela-

tionships and their possible impact on the final design are

not tackled in detail.

(Duyne et al., 2003) describe a second approach, where

patterns are arranged into 12 groups that are available at

different levels of web design. Their pattern language has

90 patterns that address various aspects of web design,

ranging from creating a navigation structure to designing

effective page layouts. The order of their pattern groups

generally indicates the order in which they should be

used in the design process. In addition, patterns chosen

from the various groups have links to related patterns in

the language. The highest level pattern group in their

scheme is Site Genres, which provides a convenient start-

ing point into the language, allowing the designer to

choose the type of site to be created. Starting from a par-

ticular Site Genre pattern, various lower level patterns

are subsequently referenced. In this way, the approach

succeeds not only in providing a starting point into the

language, but also demonstrates how patterns of different

levels may interact with one another.

PATTERNS-ORIENTED DESIGN

(Javahery and Seffah, 2002) proposed a design approach

called Pattern-Oriented Design (POD). The initial moti-

vation for POD arose from interviews carried out with

software developers using our patterns from the UPADE

web language. These interviews revealed that in order for

patterns to be useful, developers need to know how to

combine them to create complete or partial designs. Pro-

viding a list of patterns and loosely defined relationships,

as is the case for most HCI pattern languages, is insuffi-

cient to effectively drive design solutions. Understanding

when a pattern is applicable during the design process,

how it can be used, as well as how and why it can or

cannot be combined with other related patterns, are key

notions in the application of patterns.

POD provides a framework for guiding designers

through stepwise design suggestions. At each predefined

design step, designers are given a set of patterns that are

applicable. This is in stark contrast to the current use of

pattern languages, where there is no defined link to any

sort of systematic process. Pattern relationships are ex-

plicitly described, allowing designers to compose pat-

terns based on an understanding of these relationships.

As a practical illustration, we have applied POD within

the context of the UPADE pattern language for web de-

sign. Each pattern in UPADE provides a proven solution

for a common usability and HCI-related problem occur-

ring in a specific context of use for web applications.

Patterns are grouped into three categories, corresponding

closely to the various steps and decisions during the

process of web design: Architectural, Structural, and Na-

vigation Support. Structural patterns are further sub-

categorized into Page manager and Information container

patterns. During each design step, designers choose from

a variety of applicable patterns: (1) Architectural, relat-

ing to the architecture of the entire Website; (2) Page

manager, establishing the physical and logical screen

layout; (3) Information container, providing ways to or-

ganize and structure information; and (4) Navigation

support, suggesting different models for navigating be-

tween information segments and pages.

(Taleb et al., 2006) have described five types of relation-

ships between categories patterns. This multi-criterion

classification is based on the original set of relationships

(Zimmer 1994; Duyne et al., 2003; Yacoub and Ammar,

2003) used to classify the patterns proposed in (Gamma

et al., 1995). The relationships are used to compose a UI

design, allowing designers to make suppositions such as:

For some problem P, if we apply Pattern A, then Patterns

B and C apply as sub-ordinates, but pattern D cannot ap-

ply since it is a competitor. The relationships are ex-

plained below.

In POD, designers first should follow a POD model. The

model acts as a guide for designers in making stepwise

design decisions. To illustrate POD modeling, for web-

site design, we define four steps that designers should

follow: (1) Defining the architecture of the site with arc-

hitectural patterns, (2) Establishing the overall structure

of each page with page manager patterns, (3) Identifying

content-related elements for each page with information

container patterns, and (4) Organizing the interaction

with navigation support patterns. (Landay and Myers,

2001) and (Welie and Van Der Veer, 2003) also propose

to organize their Web pattern languages according to

both the design process and UI structuring elements

(such as navigation, page layout and basic dialog style).

Designers should exploit relationships between patterns.

We have described five types of relationships between

the UPADE patterns, published in (Taleb et al., 2006;

Javahery et al., 2006). The same relationships can easily

be applied to other pattern libraries. This multi-criterion

classification is based on the original set of relationships

(Zimmer 1994; Duyne et al., 2003; Yacoub and Ammar,

2003) used to classify the patterns proposed in (Gamma

et al., 1995). The relationships are used to compose a UI

design, allowing designers to make suppositions such as:

“For some problem P, if we apply Pattern X, then Pat-

terns Y and Z apply as sub-ordinates, but pattern S can-

not apply since it is a competitor.”

PATTERNS AS REUSABLE BUILDING BLOCKS:

STRUCTURAL VERSUS BEHAVIORAL APPROACH

The development of interactive applications using design

patterns as reusable design components requires a careful

look at composition techniques. Several methods have

been proposed for composition. For example, (Yacoub

and Ammar, 2003) proposed two composition techniques

categorized and illustrated as: Behavioral versus Struc-

tural Composition.

Behavioral composition approaches are concerned with

objects as elements that play multiple roles, where each

role is part of a separate pattern. These approaches are

also known in the OO literature as interaction-oriented or

responsibility-driven composition (Wirfs-Brock and

Wilkerson, 1989). Although, the POD composition ap-

proach uses notation and composition techniques that are

based on the pattern structure (i.e., its class model), (Ya-

coub and Ammar, 2003) find it useful to be familiar with

existing composition techniques that utilize the pattern's

behavior model.

Behavioral approaches enable to modeling and compos-

ing patterns, while having advantages and drawbacks.

Formalizing the behavior specification of individual pat-

terns is important for the purpose of clarifying their se-

mantics and facilitating their utilization by any pattern

composition approach. Several authors have proposed

various approaches, such as: the approach presented by

(Henderson-Sellers et al., 1996) on role modeling and

synthesis using the OO role analysis method, the works

of (Riehle, 1997) presented at the OOPSLA conference

in 1997. This approach in (Henderson-Sellers et al.,

1996; Riehle, 1997) applies the concepts of role models

suggested by Henderson-Sellers to pattern composition.

Others approaches are presented in the composition field

such as the approach called “the superimposition” pro-

posed by (Bosch, 1998), which uses design patterns and

frameworks as architectural fragments and merges roles

and components to produce applications and finally,

another approach three-layer “role/type/class” proposed

and developed by (Lauder and Kent, 1998), which takes

a visual specification approach to describe design pat-

terns.

Structural composition approaches build a design by

gluing pattern structures that are modeled as class dia-

grams. Structural composition focuses more on the actual

realization of the design rather than abstraction, using

different types of models, such as role models. Behavior-

al composition techniques, such as roles (Henderson-

Sellers et al., 1996; Riehle, 1997; Kristensen and Øster-

bye, 1996), leave several choices to the designer with

less insight on how to continue to the class design phase.

Techniques that consider both structural and behavioral

views could be complex and difficult to use. Therefore,

the POD approach advocates a structural composition

approach with pattern class diagrams (Henderson-Sellers

et al., 1996; Riehle, 1997; Kristensen and Østerbye,

1996). Constructional design patterns in which a pattern

interface can be clearly specified lend themselves to a

structural composition approach (Henderson-Sellers et

al., 1996; Riehle, 1997; Kristensen and Østerbye, 1996).

(Yacoub and Ammar, 2003) discussed several structural

composition techniques and contrast these techniques

with a proposed POD methodology. One approach for

pattern-oriented design is proposed by (Ram et al.,

1997). In contrast to the top-down approach, this ap-

proach describes a bottom-up process to design software

using design patterns. This approach shows how related

patterns can be selected; however, it does not clearly

show how patterns can be composed. Nevertheless, it

gives an example of previous attempts in the literature to

develop a systematic process for pattern-oriented soft-

ware development.

OPEN ISSUES

A universally accepted taxonomy for pattern is still miss-

ing in HCI. Patterns deal with different levels of abstrac-

tion and have to be considered at different stages. There-

fore, if languages are not structured logically, it can be

confusing for designers trying to work with them. Some

authors have suggested their own partial classifications to

facilitate the use of patterns. For example, (Welie, 1999)

discusses a taxonomy based on the domain of Web ap-

plication, GUI or Mobile UI design patterns. (Tidwell,

1997) organizes her patterns according to different facets

of UI design; categories include Content Organization,

Navigation, Page Layout, and Actions/Commands.

Furthermore, pattern languages need to clearly define

pattern relationships. Currently, pattern interrelationships

are often incomplete and not context-oriented. This is, by

far, the most serious drawback of current languages. For

example, the Experiences language describes some pat-

tern relationships, but is incomplete. Other languages

mention “related patterns” in their descriptions, but do

not define the precise nature of the relationship. This is a

limitation since relationship definitions are an important

factor in determining the circumstances under which a

pattern is applicable, having an effect on the pattern’s

context of use.

A further challenge is the lack of tool support, which

makes it difficult to capture, disseminate and apply pat-

terns effectively and efficiently. Tools need to be devel-

oped with three major objectives in mind. Firstly, tools

are needed to support UI designers and software engi-

neers involved in UI development. Secondly, as a re-

search forum for understanding how patterns are really

discovered, validated, used and perceived, tools are also

required. Thirdly, automation tools are needed to support

the usage of patterns as prototyping artifacts and building

blocks. The following are some of the required features

(Gaffar and Seffah, 2006):

1. Tools have to be designed to accept proposed or po-

tential patterns in many different formats or nota-

tions. Therefore patterns in versatile formats can be

submitted for reviewing;

2. A common editorial board for reviewing and validat-

ing patterns is also required. Before publishing, col-

lected and contributing, patterns must be accessed

and acknowledged by the editorial committee. We

are inviting HCI patterns practitioners and research-

ers to set up and join this committee;

3. A pattern ontology editor to capture our understand-

ing of pattern concepts and to put them into relation

with each other (Taxonomy) will be an important

step toward a systematic usage of patterns as well as

the emergence of a pattern-assisted design tool;

4. Tools are needed to allow us to attach semantic in-

formation to the patterns. Based on this information

and our ontology, patterns will be placed in relation-

ships, grouped, categorized and displayed;

5. A pattern navigator can also provide different ways

to navigate through patterns or to locate a specific

pattern. The pattern catalogue can be browsed by

pattern groups or searched by keyword. Moreover, a

pattern wizard will find particular patterns by ques-

tioning the user;

6. A pattern viewer will help in providing different

views of the pattern, adjusted to the preferences of

the specific pattern user’s need.

ACKNOWLEDGMENT

This tutorial is the results of several years of works and it

is based on the masters and Ph.D students of the mem-

bers of the Human-Centered Software Engineering

Group at Concordia University.

BIBLIOGRAPHY

For further information on patterns including an exhaus-

tive list of references, please visit the IPE (Integrated

Pattern Environment Website) at hci.concordia.ca

	The Patterns of Interaction Design and
	The Design of Interaction Patterns
	ABSTRACT
	FROM BUILDING TO SOFTWARE DESIGN PATTERNS
	PATTERNS OF HCI: A DEFINITION
	MISCONCEPTIONS ABOUT PATTERNS
	Patterns provide more than one solution
	Every solution is not necessary a pattern
	Window place

	PATTERNS AS A TOOL TO CAPTURE BEST DESIGN PRACTICES
	HCI DESIGN PATTERN LANGUAGES
	PATTERN LANGUAGES AND THE USER-CENTRIC DESIGN PROCESS
	PATTERNS-ORIENTED DESIGN
	PATTERNS AS REUSABLE BUILDING BLOCKS: STRUCTURAL VERSUS BEHAVIORAL APPROACH
	OPEN ISSUES
	Acknowledgment
	BIBLIOGRAPHy

